

water & sanitation

Department: Water and Sanitation REPUBLIC OF SOUTH AFRICA

PROJECT NUMBER: WK21047

INVESTIGATION OF GROUNDWATER AND SURFACE WATER INTERACTION FOR THE PROTECTION OF WATER RESOURCES IN THE LOWER VAAL CATCHMENT. GROUNDWATER QUALITY CATEGORISATION REPORT (WP11380)

DATE: November 2023

REPORT VERSION: V2.0

INVESTIGATION OF GROUNDWATER AND SURFACE WATER INTERACTION FOR THE PROTECTION OF WATER RESOURCES IN THE LOWER VAAL CATCHMENT WP11380

GROUNDWATER QUALITY CATEGORISATION REPORT

NOVEMBER 2023 FINAL

water & sanitation

Department: Water and Sanitation REPUBLIC OF SOUTH AFRICA

Published by

Department of Water and Sanitation Private Bag X313 PRETORIA, 0001 Republic of South Africa

> Tel: +27 (12) 336 7500 Fax: +27 (12) 323 0321

Copyright reserved

No part of this publication may be reproduced in any manner without full acknowledgement of the source

This report should be cited as:

Department of Water and Sanitation (DWS), South Africa. 2023. Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment: Groundwater Quality Categorisation Report. Prepared by WSM Leshika Consulting (Pty) Ltd. Report no. RDM/WMA05/00/GWSW/0223

Compiled by:

WSM Leshika Consulting Postnet Suite No.8 Private Bag X9676 Polokwane 0700

DOCUMENT INDEX

Report name	Report number		
Inception Report	RDM/WMA05/00/GWSW/0122		
Literature Review and Data Gathering Report	RDM/WMA05/00/GWSW/0222		
Gap Analysis Report	RDM/WMA05/00/GWSW/0322		
Hydrocensus Report	RDM/WMA05/00/GWSW/0422		
Water Resources Assessment Report	RDM/WMA05/00/GWSW/0522		
Quantified Recharge and Baseflow Report	RDM/WMA05/00/GWSW/0123		
Groundwater Quality Categorisation Report	RDM/WMA05/00/GWSW/0223		
Protection Zones Report	RDM/WMA05/00/GWSW/0323		
Surface-Groundwater Interaction Report	RDM/WMA05/00/GWSW/0423		
External Reviewer Report	RDM/WMA05/00/GWSW/0523		
Capacity Building and Training Report	RDM/WMA05/00/GWSW/0623		
Main Report on Surface-Subsurface Interactions	RDM/WMA05/00/GWSW/0723		
Close-out Report	RDM/WMA05/00/GWSW/0823		

Bold indicates this report

APPROVAL

TITLE:	Groundwater Quality Categorisation Report
DATE:	November 2023
AUTHORS:	Project Team
EDITOR:	Fourie I.
REVIEWERS:	Sami. K; Project Management Team
LEAD CONSULTANT:	WSM Leshika Consulting
REPORT NO:	RDM/WMA05/00/GWSW/0223
FORMAT:	MSWord and PDF
WEB ADDRESS:	http://www.dws.gov.za

Approved for WSM Leshika Consulting by:

K Sann

Mr. K. Sami Study Leader

Approved for the Department of Water and Sanitation by:

Ms L. Molokomme

Project Manager Determination _____

Mr K. Majola Scientific Manager: Groundwater Reserve

Mr Y. Atwaru

Director: Reserve Determination

ACKNOWLEDGEMENTS

The following persons contributed to this project.

Project Management Committee

Leshika, Danny	WSM Leshika (Pty) Ltd
Sami, Karim	WSM Leshika (Pty) Ltd – Study Leader
Atwaru, Yakeen	DWS
Baloyi, Lucky.	DWS
Biyela, Mfundi.	DWS
Boniwe, Nobubele.	DWS
Fourie, Fanus.	DWS
Khoza, Philani.	DWS
Leshika, Danny	WSM Leshika (Pty) Ltd
Mahlahlane, Kgotso.	DWS
Majola, Kwazikwakhe	DWS
Mazibuko, Molefe Jacob.	DWS
Mokgatle, Tumelo.	DWS
Mokoena, Portia.	DWS
Molokomme, Lerato.	DWS – Project Manager
Mulangaphuma, Lawrence.	DWS
Ngilande, Terrence.	DWS
Okonkwo, Adaora.	DWS
Sami, Karim.	WSM Leshika (Pty) Ltd – Study Leader
Seago, Caryn.	WRP Consulting Engineers (Pty) Ltd
Thebe, Olebogeng.	DWS

AUTHORS

The following persons contributed to this report:

Author	Company	
Sami, K	WSM Leshika (Pty) Ltd	

REPORT SCHEDULE

Version	Date
First draft	March 2023
Final V1	April 2023
Final V2	October 2023

TABLE OF CONTENTS

CONTENTS

1	IN	NTRODUCTION	1
	11	Study Context	1
		Aims and Objectives of the Project	
		Purpose of Report	
-			
2	S	TUDY AREA	2
	2.1	Location and Drainage	2
	2.2	Climate	
	2.3	Geology	5
	2.4	Hydrogeology	9
3	N	/IETHODOLOGY	11
4	G	ROUNDWATER QUALITY	12
	4.1	Electrical Conductivity	12
	4.2	Nitrates	17
	4.3	Fluoride	21
	4.4	Metals	24
	4.5	Temporal Trends	28
	4.6	Groundwater Types	
	4.7	Surface Groundwater Interaction Processes and Groundwater Quality	31
5	C	ONCLUSIONS	32
6	R	EFERENCES	35
7	Α	PPENDIX 1 GROUNDWATER EC OVER TIME	36

LIST OF TABLES

Table 2-1 Stratigraphy of the study area	6
Table 3-1 DWS Guidelines for Domestic Water Quality (DWAF, 1998)	11
Table 3-2 Classification by water quality	12
Table 4-1 Distribution of EC in mS/m by Percentile	14
Table 4-2 Number of boreholes with EC in quality class	15
Table 4-3 Distribution of Nitrates in mg/l by Percentile	18
Table 4-4 Number of boreholes with Nitrates in quality class	19
Table 4-5 Distribution of Fluoride in mg/I by Percentile	22
Table 4-6 Number of boreholes with Fluoride in quality class	23
Table 4-7 Maximum concentration of metals in mg/I	25

LIST OF FIGURES

Figure 2-1 Lower Vaal drainage Region	3
Figure 2-2 MAP in the lower Vaal	4
Figure 2-3 Mean annual S-pan evaporation	5
Figure 2-4 Geology. See Table 2-1 for the lithology of Geology codes	
Figure 2-5 Groundwater regions	. 11
Figure 4-1 Groundwater EC by Quaternary catchment	
Figure 4-2 Endoreic areas	. 16
Figure 4-3 Boreholes with high EC and Kalahari sand cover	. 17
Figure 4-4 Nitrates in Groundwater by Quaternary catchment	. 18
Figure 4-5 Percent of boreholes with potable groundwater in terms of nitrates	. 21
Figure 4-6 Fluoride in Groundwater by Quaternary catchment	. 22
Figure 4-7 Distribution of arsenic in groundwater	
Figure 4-8 High arsenic concentrations and arsenic hosting lithologies	. 28
Figure 4-9 Electrical conductivity over time	. 30
Figure 4-10 Groundwater type	. 31
Figure 4-11 Groundwater Present Status Category	. 32

1 INTRODUCTION

1.1 Study Context

The purpose of the NWA (1998) is to ensure that the nation's water resources are protected, used, developed, conserved, managed and controlled in ways which take into account amongst other factors: promoting equitable access to water; redressing the results of past racial and gender discrimination; promoting the efficient, sustainable and beneficial use of water in the public interest; facilitating social and economic development; protecting aquatic and associated ecosystems and their biological diversity and; meeting international obligations (NWA, 1998). Chapter 3 introduces a series of measures which together are intended to protect all water resources.

The Chief Directorate: Water Ecosystems Management (CD: WEM) is tasked with the responsibility to coordinate all Reserve determination studies which have priority over other uses in terms of the NWA.

This study intends to determine and quantify groundwater and surface water interactions and identify protection zoning to prevent the disturbance of the ecological integrity of ecosystems where such interactions occur. A feasibility study undertaken by the Department of Water and Sanitation (DWS) in 2007 and the National Water Resource Strategy II identified the need for surface-subsurface interaction studies in the lower Vaal. The purpose of such studies would be understanding subsurface processes when determining the Reserve.

1.2 Aims and Objectives of the Project

The need to undertake significant groundwater-surface water interaction studies became apparent to the DWS due to the need to understand the groundwater balance when determining the Reserve. Groundwater not only provides for dispersed water supply needs, but also make significant contributions to the ecological reserve, as well as to Basic Human Needs for future water supply. The main objectives of the study are:

- Review existing water resource information;
- Conduct a hydrocensus on an institutional level;
- Conduct a water resource assessment of surface water, groundwater, baseflow, abstraction, surface and groundwater balance, present status category;
- Quantify aquifer parameters and describe aquifer types;
- Determine groundwater-surface water interactions both in terms of quality and quantity to determine protection zones;
- Capacity building and skills transfer to DWS staff.

The project timeframe is 24 months, starting from November 2021-November 2023.

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Quality Categorisation Report

1.3 Purpose of Report

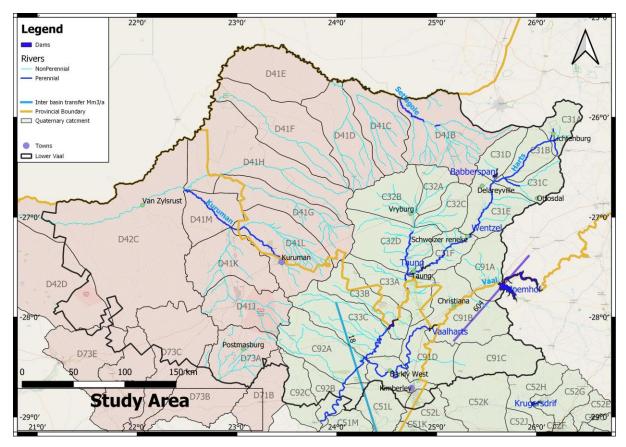
This report is submitted to Department of Water and Sanitation (DWS) by WSM Leshika Consulting to categorise groundwater quality for macro and microconstituents in terms of:

- Quaternary catchment
- Processes and Catchment characteristics that impact on groundwater quality

Chapter 2 describes the study area. **Chapter 3** describes the methodology utilised and **Chapter 4** categorises groundwater quality.

2 STUDY AREA

The study area has been described in the Water Resources Assessment Report and is only summarized here.


2.1 Location and Drainage

The Lower Vaal catchment (former WMA 10) lies in the north-eastern part of the Northern Cape Province, the western part of Northwest Province, and a part of the northern Free State Province (**Figure 2-1**). It contains the Molopo and Kuruman (D4), Harts (C3), and the Vaal (C9) (below Bloemhof dam and above Douglas Weir) catchments. These catchments include Tertiary catchments C31-C33, C91-92, D41, and Quaternary catchments D73A, D42C-D, D73B-E. They contain dolomite aquifers, where interaction with surface water can be significant. The water in the Lower Vaal region drains to the Lower Orange drainage region before reaching the Atlantic Ocean near the town of Alexander Bay in the western corner of the country.

The basins are located in a semi-arid to arid region of South Africa. Most of the surface water resources originate upstream of Bloemhof dam. Groundwater is an important water resource, especially in areas located away from surface water bodies. Groundwater use depletes the already meagre surface water resources by inducing losses from river channels or depleting flow from dolomitic eyes and as baseflow.

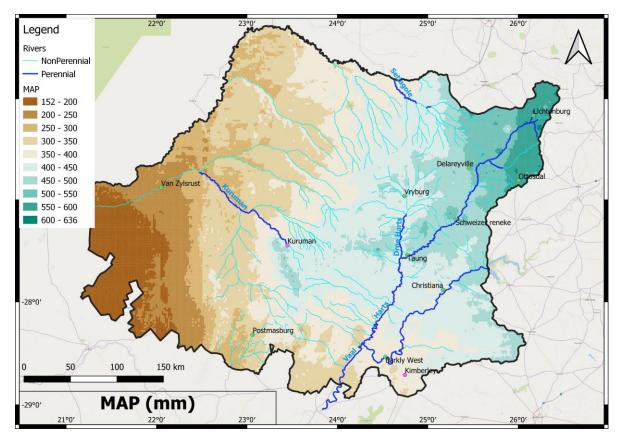
The Lower Vaal is located between the Middle Vaal drainage region and the Lower Orange drainage region, with the Upper Orange basin to the southeast, and Botswana to the north. The Lower Vaal has an area of approximately 136 146 km². It excludes the Riet-Modder River catchment) (C5), the Molopo River system above its confluence with the Nossob (parts of D42) and portions of the Vaal River catchment below the confluence with the Harts and Douglas weir (parts of C92B and C, and D71B). It is important to note that although the Riet-Modder Catchment forms part of the Vaal River Basin, it is included as part of the Upper Orange River sub-system, mainly due to the fact that there are several transfers from the Orange River to support water requirements in the Riet-Modder catchment. The only connection between the Vaal and Riet-Modder rivers is the spills from the Riet-Modder catchment into the Vaal River just upstream of Douglas Weir.

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Categorisation Report

Figure 2-1 Lower Vaal drainage Region

The main rivers of the Lower Vaal catchment, the Vaal and Harts Rivers, are perennial and most of their tributaries are ephemeral. The main source of surface water is the Vaal River, which flows into the study area below Bloemhof Dam, before its confluence with the Orange River. The main dams are Wentzel, Taung, Spitskop, Vaalharts Weir, Douglas weir and Bloemhof. The largest pan is Babberspan, located in the Harts sub-catchment.

The Kuruman and Molopo Rivers, which drain the Kalahari and northern Lower Orange regions, do not make a meaningful contribution to the surface water resources of the Orange River, and interact with groundwater via evapotranspiration and losses of flow generated by upstream springs into dry river channels.


The dolomitic springs in the Harts and Molopo catchments form distinct groundwater ecosystems and are themselves a form of surface-groundwater interaction.

2.2 Climate

Climate plays a significant role in groundwater quality in terms of the aridity concentrating the load of salts, and evaporation concentrating salt loads.

Minute by minute gridded rainfall shows that the MAP ranges from 150 to over 600 mm/a, with the highest rainfall in the northeast, declining to the west. (Figure 2-2).

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Categorisation Report

Figure 2-2 MAP in the lower Vaal

S-pan evaporation increases from 1800 mm/a in the east to 2690 mm/a in the west (**Figure 2-3**). Net evaporation losses from open water surfaces can be significant.

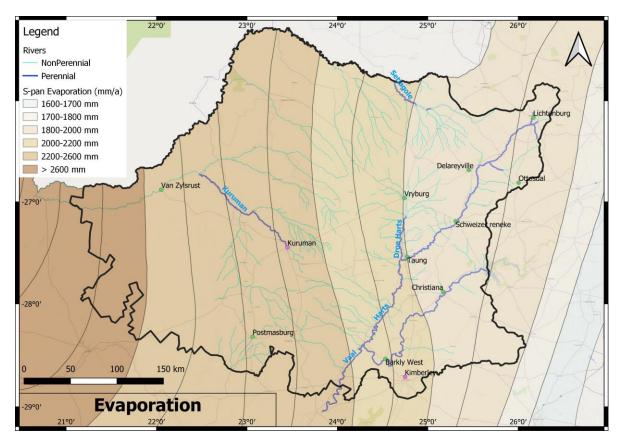


Figure 2-3 Mean annual S-pan evaporation

2.3 Geology

The Lower Vaal catchment area is underlain by diverse lithologies. Several broad lithostratigraphic units fall within the boundaries. A simplified geological map of the study area is presented in **Figure 2-4** and the legend is shown in **Table 2-1**, from oldest to youngest lithologies.

A large portion of the central and north-east corner of Lower Vaal is underlain by the Transvaal Supergroup (ANbr-Rvw), with much of it consisting of dolomite, chert, and subordinate limestone. The dolomitic area is characterised by a high potential for groundwater development, with relatively high recharge, storage and borehole yields. The groundwater level is between 8 to 20 metres below ground level on average. Water is found mainly in fractures; dissolution features are not prominent. Interactions occur where these compartments drain via dolomitic eyes.

Unlike the central dolomitic area, the geology of the western part of the catchment does not lend itself to significant groundwater resources. Boreholes tend to be less successful and much deeper, up to 125 metres below ground level. Water is also often saline. It is this very limited and unreliable groundwater resource that necessitated the implementation of the Kalahari East and West rural water supply schemes. There is no connection between surface and groundwater.

The Olifantshoek Supergroup (Orlm-Ecz) lies to the west of the study area in the vicinity of Van Zylsrust, Hotazel, Sishen and Postmasburg. Here the geology consists of very low-to-low grade

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Categorisation Report

metamorphic rocks of schist, quartzite, lava, sub greywacke and conglomerates. Dwyka Tillite with Ecca sandstone, mudstone, and shale (C-pd-Pt) is also found in the area (DWAF,2004).

The Ventersdorp Supergroup (ANkb-ANbo) lies to the east and north of the Transvaal Supergroup and is composed mainly of volcanic rocks, andesite, quartz porphyry, sedimentary rocks, conglomerate, and sandstone. This area also represents a low-grade metamorphism and water is found in weathered fractures. The probability of a successful borehole yielding >2I/s is 10-20% with the average groundwater level being between 8 to 20 metres below ground level.

	Map label			
Age	(Figure 2-7)	Group	Lithostratigraphy	Lithology
			ALLUVIUM, COLLUVIUM,	
			ELUVIUM, GRAVEL, SCREE,	Alluvium, colluvium, eluvium, boulder
	N-Qg		SAND, SOIL, DEBRIS	gravel, gravel, scree, sand, soil, debris
			CALCRETE, SURFACE	
Neocene	N-QI		LIMESTONE, HARDPAN	Calcrete, surface limestone, hardpan
				Pebbly and calc-conglomerate,
				mudstone, gritstone,
				siliceous/calcareous sandstone,
_				silcrete, diatomaceous limestone,
Cretaceous	K-Qk	Kalahari	KALAHARI GROUP	calcrete
Jurassic	Jd		KAROO DOLERITE SUITE	Dolerite, minor ultrabasic rocks
				Greenish- to bluish-grey and greyish-
				red mudstone, siltstone, subordinate
	Pbf	Adelaide	BALFOUR FORMATION	sandstone
				Grey shale with interbedded siltstones
	Pt	4	TIERBERG FORMATION	in the upper part
				Grey shale, tuff, minor sandstone,
			COLLINGHAM AND WHITEHILL	chert, black (white-weathering)
	Pw	-	FORMATIONS	carbonaceous shale
				Green to grey shale, rapidly alternating
			PRINCE ALBERT, WHITEHILL	grey shale (and subordinate
	David		AND COLLINGHAM	sandstone/siltstone), thin yellow-
	Ppw	-	FORMATIONS	weathering tuff (K-bentonite) layers
				Shale, carbonaceous shale, siltstone, tuff, chert, phosphatic nodules,
Permian	Pe	Ecca	ECCA GROUP	sandstone
Perman	Pe	ECCA		Diamictite, varved shale, siltstone,
				mudstone with dropstones,
Carboniferous	C-Pd	Dwyka	DWYKA GROUP	fluvioglacial gravel and sandstone
carbonnerous		Dwyka		Reddish/purplish quartzite, phyllite,
	ECz		ZONDERHUIS FORMATION	schist, dolomite, conglomerate
	ORpy		PRYNNSBERG FORMATION	Muscovite quartzite, schist
				Fine- to medium-grained, white, and
	ORbs		BRULSAND SUBGROUP	grey quartzite
				Coarse-grained, reddish-brown to grey
				and purple quartzite/subgreywacke,
	ORma	Volop	MATSAP SUBGROUP	minor conglomerate
				Basalt, basaltic andesite, tuff, quartzite,
	ORha		HARTLEY FORMATION	minor conglomerate

 Table 2-1 Stratigraphy of the study area

	Map label			
Age	(Figure 2-7)	Group	Lithostratigraphy	Lithology
	ORIm	Olifantshoek	LUCKNOW AND MAPEDI FORMATIONS	Quartzite, flagstone, shale, dolomitic limestone, andesite
				Dolomite, jasper, iron-formation, chert,
Mokolian	Rvw		VOELWATER SUBGROUP	minor volcanic rocks
	Rd	_	DIABASE	Magnesium-rich tholeiite, melanorite
	Rog	Сох	ONGELUK FORMATION	Biotite-muscovite metapelite
				Diamictite, subordinate sandstone,
				carbonate rock, jaspilite, mudrock,
	Rmg	_	MAKGANYENE FORMATION	chert and conglomerate
	ORgm	_	GAMAGARA FORMATION	Conglomerate and shale
				Jaspilite, banded iron-formation
				(minnesotaite lutite, minor riebeckite
				lutite), jaspilite, mudrock, claystone,
				siltstone, quartzite, quartz wacke,
	SDko	-	KOEGAS SUBGROUP	stromatolitic dolomite, chert
				Iron-formation ("jaspilite"), mudrock
	SDda		DANIELLSKUIL FORMATION	(towards top), minor crocidolite, riebeckite and minnesotaite
	SDua	-	DANIELESKOIL FORMATION	Chert-poor dolomite characterized by
				giant stromatolite domes, laminated,
	ANrv		REIVILO FORMATION	iron-rich dolomite, ferruginous chert
		-		Dolomite, limestone, banded iron-
				formation, quartzite, shale, jaspilite,
	ANpa		PAPKUIL FORMATION	chert
	·			Banded iron-formation, riebeckite-
				amphibolite, chert, minor minnesotaite
				and crocidolite, finely laminated brown
	SDku	Griquatown	KURUMAN FORMATION	to red-brown shale
				Ferruginised brecciated banded
	SDwo		WOLHAARKOP FORMATION	ironstone
			KLIPFONTEINHEUWEL	
	ANkf	_	FORMATION	Dolomite, prominent chert at base
				Dolomite/limestone, banded iron-
				formation, quartzite, shale, jaspilite,
	ANko	-	KOGELBEEN FORMATION	chert
	0.011			Conglomerate, talus breccia, quartz
	ANkl	-	KLIPPAN FORMATION	arenite, shale, andesite, limestone
				Dolomite, limestone, banded iron-
	ANgo		GAMOHAAN FORMATION	formation, quartzite, shale, jaspilite, chert
	ANga	-		
	ANff	4	FAIRFIELD FORMATION	Stromatolitic dolomite
	ANmo		MONTEVILLE FORMATION	Dolomite and subordinate shale, siltstone, and quartzite
	ANcw	1	CLEARWATER FORMATION	Shale, minor dolomite
		Campball	BOOMPLAAS FORMATION	
	ANbp	Campbell		Dolomite/limestone, mudrock
				Quartzitic sandstone, mudrock, andesite, basalt, siltstone, dolomite,
				limestone, minor conglomerate, tuff,
Vaalian	ANvb		VRYBURG FORMATION	and chert
vaaiiall	ANVD			

	Map label			
Age	(Figure 2-7)	Group	Lithostratigraphy	Lithology
				Mudrock, quartzite (ferruginous in
				places), wacke, chert breccia, minor
			TIMEBALL HILL AND	diamictite, conglomerate, shale,
	Rtr	Pretoria	ROOIHOOGTE FORMATIONS	magnetic ironstone
				Dolomite, stromatolitic, interbedded
		Chuniespoor		chert, minor carbonaceous shale,
	ANml	t	MALMANI SUBGROUP	limestone, and quartzite
				Quartzite, subordinate conglomerate,
	ANbr		BLACK REEF FORMATION	and shale
				Pinkish, coarse-grained, porphyritic
	ANmt	Intrusive	MOSITA GRANITE	granite
				Conglomerate, gritstone, quartzite,
	ANbo		BOTHAVILLE FORMATION	subgreywacke, shale lenses
	ANal		ALLANRIDGE FORMATION	Andesite, tuff
				Andesite to dacitic volcanic rocks,
				minor conglomerate, greywacke, and
	ANrg		RIETGAT FORMATION	shale
				Acid volcanic rocks (mainly quartz
				porphyry), ash flows, subordinate
	ANmk		MAKWASSIE FORMATION	sedimentary rocks
				Greenish grey porphyritic and
				subordinate non-porphyritic mafic
	ANgg		GOEDGENOEG FORMATION	volcanic rocks
	ANka	Platberg	KAMEELDOORNS FORMATION	Shale, conglomerate, greywacke
		Klipriviersbe		Tholeiitic basalt, andesite, basalt, tuff,
	ANkb	rg	KLIPRIVIERSBERG GROUP	and agglomerate
				Fine- to medium-grained quartzite,
	AMhh	West Rand	HOSPITAL HILL SUBGROUP	shale, magnetic shale
				Basaltic andesite, quartz-feldspar
				porphyry, amygdaloidal andesite, tuff,
Randian	AMdo	Dominion	DOMINION GROUP	conglomerate, quartzite
			LINDEN GNEISS, MIDRAND	Ultramafic rocks, granitic rocks, dioritic
			GNEISS, VICTORY PARK	gneiss, hornblende gneiss, biotite
			GRANODIORITE, HONEYDEW	gneiss, hybrid mafic rocks, migmatite,
	AMIv		GRANODIORITE	porphyritic granodiorite
			UNDIFFERENTIATED TONALITE,	Potassic gneiss and migmatite, strongly
	AM-APg	Intrusive	GRANITE AND GNEISS	porphyroblastic
			MULDERSDRIF, ROODEKRANS,	
			CRESTA-ROBINDALE,	
			EDENVALE-MODDERFONTEIN,	
			ZANDSPRUIT COMPLEXES,	
			UNDIFFERENTIATED MAFICS	Serpentinised dunite, harzburgite,
	APzu	Intrusive	AND ULTRAMAFICS	Iherzolite, pyroxenite and gabbro
		1		Banded chert/jaspilite, minor
	AMkh		KHUNWANA FORMATION	metavolcanic rocks, and amphibolite
	AMfr	1	FERNDALE FORMATION	Variegated, banded jaspilite
	,	1		Mica, pyrophyllitic and quartz-chlorite
				schists, magnetite quartzite, dolomite,
				banded iron-formation and amphibole-
Swazian	AMgg	Kraaipan	GOLD RIDGE FORMATION	rich zones
50021011	1 I I I I I I I I I I I I I I I I I I I	Maaipali		

Map label (Figure 2-7)	Group	Lithostratigraphy	Lithology
			Banded iron-formation, jaspilite,
AMkr		KRAAIPAN GROUP	metavolcanic rocks (amphibolite)

2.4 Hydrogeology

The region is divided into several groundwater regions (Figure 2-5):

- The Eastern and Western Kalahari are covered by extensive Cretaceous to Quaternary sand overlying a host of lithologies
- The Zeerust-Delmas Karst Belt consists of Malmani dolomites;
- The Ghaap Plateau is underlain by Campbell and Griquatown Group dolomites and banded ironstones;
- West Griqualand consists of the Olifantshoek Group, Volop Group, Griquatown and Cox Groups banded ironstone, mudstone, shale, tillite and quartzite;
- The Taung-Prieska Belt consists of Vrgburg Group quartzite, Ventersdorp volcanics, and some Ecca Group shale;
- The Western Highveld contains banded ironstone of the Kraaipan Group, intrusive granite and gneiss, Witwatersrand Supergroup rocks of the Dominion and West Rand Group, Ventersdorp Supergroup volcanics and Ecca group shales;
- The Northeast and Central Pan contains Ecca Group, and Balfour Formation shales, mudstones, and sandstones, and extensive dolerite intrusions.

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Categorisation Report

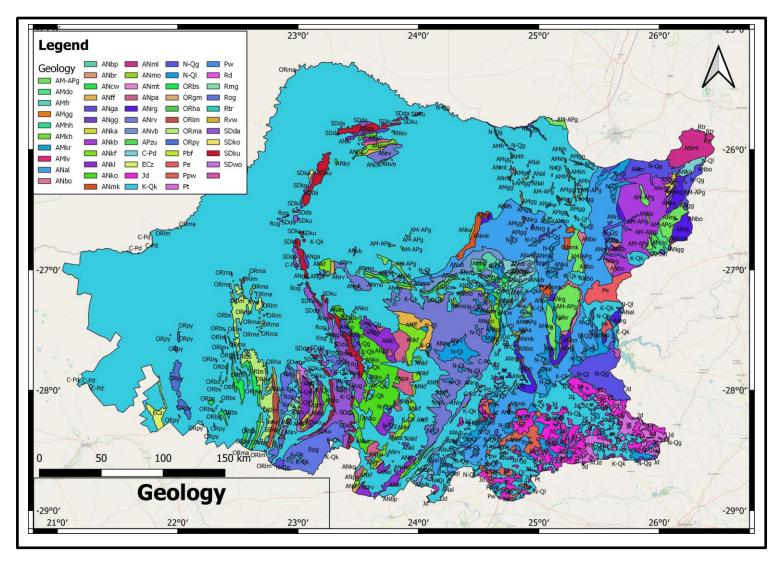


Figure 2-4 Geology. See Table 2-1 for the lithology of Geology codes

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Quality Categorisation Report

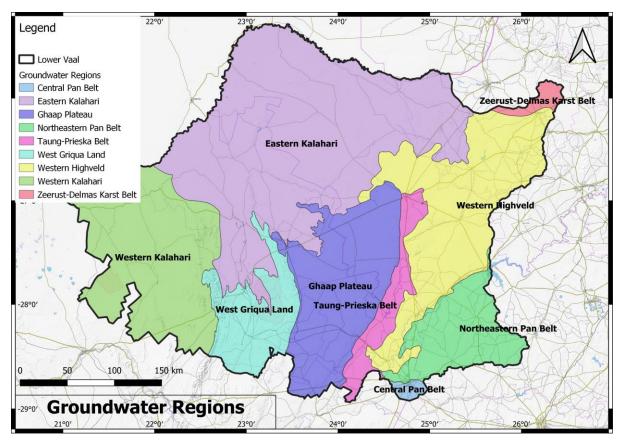


Figure 2-5 Groundwater regions

3 METHODOLOGY

All hydrochemical data were collated from the DWS Resources Quality Information Services. Data was assessed for potable use by using the Guidelines for Domestic Water Quality (DWS, 1998) (**Table 3-1**). Potable groundwater is defined as water of Class 0 and 1.

		Classifica	Classification						
Analyses	Unit	Class 0 IDEAL	Class I GOOD	Class II MARGINAL	Class III POOR	Class IV UNACCEPTABLE			
рН		5.5 - 9.5	4.5-5.5 and 9.5- 10	4-4.5 and 10- 10.5	3-4 and 10.5-11	< 3 or > 11			
Conductivity	mS/m	< 70	70 - 150	150 - 270	270 - 450	> 450			
TDS	mg/l	< 450	450 - 1000	1000 - 2400	2400 - 3400	> 3400			
Total Hardness	CaCO 3	< 200	200 - 300	300 - 600	> 600				
Calcium	mg/l	< 80	80 - 150	150 - 300	> 300				
Copper	mg/l	< 1	1 - 1.3	1.3 - 2	2 - 15	> 15			
Iron	mg/l	< 0.5	0.5 - 1	1 - 5	5 - 10	> 10			

Table 3-1 DWS Guidelines for Domestic Water Quality (DWAF, 1998)

		Classifica	ation			
Analyses	Unit	Class 0 IDEAL	Class I GOOD	Class II MARGINAL	Class III POOR	Class IV UNACCEPTABLE
Magnesium	mg/l	< 70	70 - 100	100 - 200	200 - 400	> 400
Manganese	mg/l	< 0.1	0.1 - 0.4	0.4 - 4	4 - 10	> 10
Potassium	mg/l	< 25	25 - 50	50 - 100	100 - 500	> 500
Sodium	mg/l	< 100	100 - 200	200 - 400	400 - 1000	> 1000
Chloride	mg/l	< 100	100 - 200	200 - 600	600 - 1200	> 1200
Fluoride	mg/l	< 0.7	0.7 - 1	1 - 1.5	1.5 - 3.5	> 3.5
Nitrate NO3 - N	mg/l	< 6	6 - 10	10 - 20	20 - 40	> 40
Nitrite NO2 - N	mg/l	< 6	6 - 10	10 - 20	20 - 40	> 40
Orthophosphate (PO4 as P)	mg/l	< 0.1	0.1 - 0.25	0.25 - 1	> 1	
Sulphate (SO4)	mg/l	< 200	200 - 400	400 - 600	600 - 1000	> 1000
MPN E. coli	/100 ml	0	0 - 1	1 - 10	10 - 100	> 100

Water quality classification is based on the number of samples falling within each class of the South African Water Quality Guidelines for Domestic use (**Table 3-1**) for the Present Status Category (PSC) assessment of a water resource (**Table 3-2**).

Table 3-2 Classification by water quality

Management Class	Description
1	>95% Class 0 or 1
Ш	>95% Class 0-2
	Class 3 or 4 or <75% Class 0-2

For trace metals, all analyses with results below detection limits were removed to remove spurious results. Constituents with maximum results above SANS-241 limits were evaluated.

4 GROUNDWATER QUALITY

4.1 Electrical Conductivity

The distribution of EC is shown in **Figure 4-1, Tables 4-1 and 4-2.** Groundwater quality is of Class 0 to 1, with an EC of less than 150 mS/m, in the dolomitic aquifers of C31A around Lichtenburg and Kuruman in D41G and D41J-L. Only a few boreholes are of Class 2, indicative of very localised

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Categorisation Report

contamination. These boreholes are found at small communities like Tsineng, Ga Mopedi and Mothibistad or at farms.

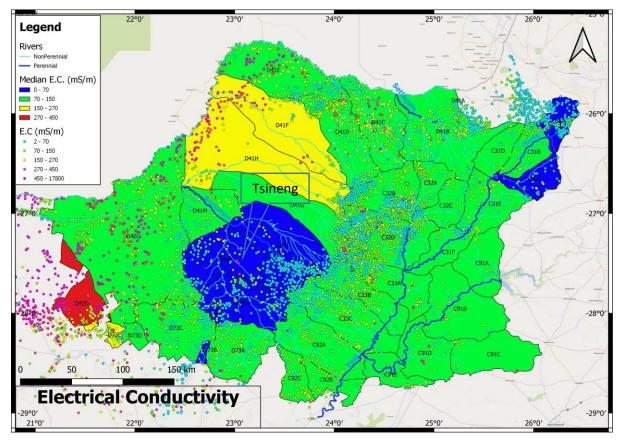


Figure 4-1 Groundwater EC by Quaternary catchment

Over most of the eastern portion of the study area groundwater is of Class 1-2, with a median of Class 1. Groundwater of Class 2 and 3 is found at Hartswater where irrigation from the Vaalharts occurs in C33A-C, however, the median remains Class 1. Groundwater of Class 3-4 occurs from Vryburg to Reivilo in C32B, D41G and C33B. These areas are associated with communities, irrigated lands, and extensive dryland farming.

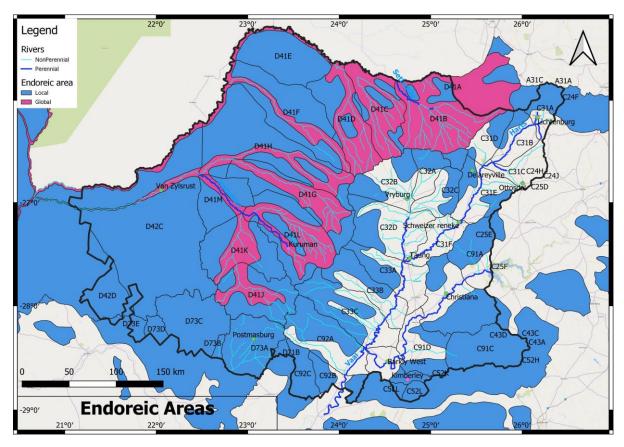
The western region has highly variable water quality, with medians of 1-3 in non-dolomitic areas. The presence of large endoreic areas (**Figure 4-2**) in the drier western regions results in worsening groundwater quality to Class 3 and 4 since salts are not exported and accumulate in pans, creating variability in water quality.

Linear trends of Class 0-1 groundwater occur along the Kuruman and Molopo rivers, indicative of flood waters and discharge from dolomite springs recharging the aquifer along the rivers. This can be noted along the Kuruman River to the confluence with the Molopo River as far as D41E.

The presence of endoreic salt pans northeast of Kimberley in C91D also results in elevated salinity.

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Categorisation Report

			20 th	40 th	60 th	80 th	100 th	Potable
Quat	Average	Median	percentile	percentile	percentile	percentile	percentile	fraction
C31A	60.96	60.15	35.86	57.1	62.9	75.1	291.2	98.72
C31B	79.77	74.4	60.7	68.28	78.38	96.24	206	97.65
C31C	98.64	51.7	28.1	43.2	60.2	142	658	82.05
C31D	85.30	79.3	64.7	72.6	89.3	110.2	149	100.00
C31E	88.94	76.75	57.34	70.52	83.12	104.52	433	90.43
C31F	78.68	75.7	46.8	69.2	83.8	102.9	164	92.68
C32A	136.81	90.5	71.94	84.2	96.22	109.86	2330	90.48
C32B	155.01	81.3	54.9	73.7	90	124.9	15600	85.92
C32C	79.89	72	57	66.02	76.66	97.24	283	93.94
C32D	91.07	79.15	63.9	73.98	85.44	104.48	780	92.20
C33A	99.00	84.2	67	78.7	88.8	107.2	1180	89.75
C33B	90.46	79.45	60.9	72.7	86.8	107.5	451.1	92.23
C33C	81.88	72.1	55.3	65.66	78.32	100.44	514	93.15
C91A	100.39	73.7	59.92	65.1	85.56	125.06	243.5	86.67
C91B	116.49	95	70	79	113.6	142.6	359	82.61
C91C	102.88	79.1	55.7	68.44	86.74	116.6	354	84.62
C91D	177.58	80.9	60.2	72.42	88.72	116.36	1888.9	84.62
C91E	122.23	106.45	64.32	89.18	118.92	186.4	339.2	66.67
C92A	75.63	73.8	40.2	62.7	81.8	104.2	199	95.52
C92B	100.17	99.65	79.44	91.94	102.8	119.66	160	98.44
C92C	100.13	90.2	73.04	84.06	98.68	120.12	352	86.41
D22A	308.00	308	308	308	308	308	308	0.00
D41A	64.05	58.2	46.7	54.7	61.52	77.18	225	97.88
D41B	100.07	79.2	53.7	71.86	94.38	122.02	664	84.37
D41C	143.01	109.95	76.76	96.54	126.72	202	752	64.78
D41D	115.85	90.7	66.6	83	99.54	160	550	77.35
D41E	249.24	114.9	68.8	90.9	191	317	1570	55.38
D41F	314.85	206	89.6	163	246	393.4	4270	37.72
D41G	101.81	78	56.7	67.96	84.46	125.7	724.6	85.20
D41H	252.43	164.3	78.32	123.88	271	407.68	1219	47.21
D41J	74.91	69.45	45.4	62.8	75.46	89.14	521.8	94.84
D41K	95.67	68	26.48	50.12	72.44	106.16	1370	86.47
D41L	59.43	55	41.62	51.8	57.96	67.28	483.5	98.88
D41M	107.01	88.2	64.96	75.98	99.7	144.6	402	82.35
D42A	1 000.53	606.3	273.12	461.88	857.92	1675.2	5620.3	5.49
D42B	666.50	448	253.08	383.62	570.72	884.32	6643.1	6.23
D42C	358.37	140	78	106	182.4	440.3	9800	53.17
D42D	817.87	384	146.6	277.38	517.3	1012.82	17800	20.67


Table 4-1 Distribution of EC in mS/m by Percentile

D42E	412.68	315	128.88	260.74	402.4	600.5	3904	23.62
D73A	96.90	81.2	66.7	76.26	84.64	107.58	849	91.28
D73B	107.64	51.5	15.86	35.86	67.88	128.56	1264	81.65
D73C	118.72	82	35.5	64.34	100.48	156.98	772	77.69
D73D	191.17	123.8	66.7	99.4	161.3	264	1187	54.35
D73E	205.61	158.2	95.9	139.6	180.64	273.22	950	45.45
D73F	204.49	175.5	112	143.98	214.54	283.32	517	45.45

Table 4-2 Number of boreholes with EC in quality class

Quaternary	Class 0	Class 1	Class 2	Class 3	Class 4	Classification
C31A	172	59	2	1	0	I
C31B	37	46	2	0	0	1
C31C	26	6	5	0	2	III
C31D	8	18	0	0	0	I
C31E	35	50	6	3	0	Ш
C31F	17	21	3	0	0	Ш
C32A	28	124	9	2	5	Ш
C32B	246	395	73	21	11	Ш
C32C	46	47	5	1	0	Ш
C32D	291	537	57	8	5	Ш
C33A	85	239	29	6	2	Ш
C33B	143	213	25	4	1	Ш
C33C	131	141	18	1	1	Ш
C91A	7	6	2	0	0	Ш
C91B	9	29	5	3	0	Ш
C91C	5	6	1	1	0	Ш
C91D	11	22	2	1	3	Ш
C91E	11	17	13	1	0	Ш
C92A	93	99	9	0	0	I
C92B	4	59	1	0	0	I
C92C	17	72	13	1	0	Ш
D22A	0	0	0	1	0	Ш
D41A	278	92	8	0	0	1
D41B	127	159	42	9	2	Ш
D41C	43	163	85	23	4	Ш
D41D	105	216	71	22	1	Ш
D41E	53	86	48	28	36	Ш
D41F	12	31	29	22	20	Ш
D41G	108	105	24	10	3	Ш
D41H	31	62	24	51	29	Ш
D41J	128	111	10	2	1	П

	1					
D41K	73	42	8	7	3	III
D41L	299	54	1	2	1	1
D41M	27	43	11	4	0	Ш
D42A	4	5	24	31	100	Ш
D42B	2	21	60	103	182	Ш
D42C	104	324	116	103	157	Ш
D42D	25	165	170	150	409	Ш
D42E	4	26	24	29	44	Ш
D73A	43	114	12	2	1	Ш
D73B	66	23	12	2	6	Ш
D73C	106	82	34	10	9	Ш
D73D	11	14	12	6	3	Ш
D73E	15	50	49	17	12	Ш
D73F	1	19	12	10	2	Ш

Figure 4-2 Endoreic areas

Boreholes with a high electrical conductivity of Class 3 and 4 are largely restricted to areas covered by Kalahari sands, which are dry, endoreic, and where the sand cover serves to reduce recharge (**Figure 4-3**).

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Categorisation Report

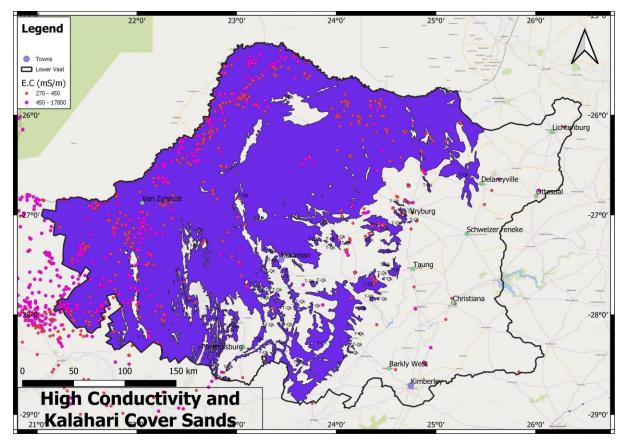


Figure 4-3 Boreholes with high EC and Kalahari sand cover

4.2 Nitrates

Groundwater quality in terms of nitrates is shown in **Figure 4-4, Tables 4-3 and 4-4.** No significant nitrification is evident in the lower Vaalharts area of C33, although elevated nitrates occur in a band of dryland agriculture between Vryburg and Lichtenburg in C31and C32, and east of Kimberley and Christiana in C91C. In the west, natural dryland nitrate conditions occur due to the absence of vegetation and organic material to uptake nitrates, resulting in the median nitrate concentration to decrease to Class 2 in D42, and in increasing number of boreholes of class 3 and 4 in the western Quaternaries of D41.

In C31 and C91C, less than 50% of boreholes are potable due to nitrates (**Figure 4-5**). Potability also decreases westwards to under 50% in D42 and D73.

Many catchments are borderline but classified as Present Status Category (PSC III), with 80-95% of boreholes in Class 0-2.

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Categorisation Report



Figure 4-4 Nitrates in Groundwater by Quaternary catchment

			20 th	40 th	60 th	80 th	100 th	Potable
Quat	Average	Median	percentile	percentile	percentile	percentile	percentile	fraction
C31A	7.69	4.60	1.65	3.71	5.93	11.83	42.82	74.79
C31B	14.91	13.98	6.31	11.61	15.68	19.91	69.08	31.76
C31C	11.07	10.53	2.04	8.73	11.46	18.73	36.51	46.15
C31D	11.37	10.47	6.79	9.17	12.02	17.45	22.89	46.15
C31E	14.55	14.10	4.79	11.32	15.49	20.99	97.66	32.98
C31F	14.05	11.86	7.08	9.36	13.34	21.04	45.55	46.34
C32A	17.50	15.38	4.28	11.67	17.26	24.59	107.46	35.71
C32B	15.85	7.01	2.31	5.09	9.37	20.32	373.45	62.87
C32C	12.85	6.04	1.73	4.73	10.60	23.16	70.82	58.59
C32D	10.16	4.28	0.58	2.89	6.41	12.72	376.87	72.49
C33A	8.97	5.76	1.63	4.01	7.37	11.84	131.13	74.79
C33B	8.76	5.40	1.74	3.38	7.56	11.66	74.89	73.58
C33C	7.45	3.71	1.28	2.75	5.12	9.87	99.38	80.41
C91A	4.51	3.13	1.22	2.89	5.13	7.08	12.49	93.33
C91B	11.32	6.80	2.23	5.45	7.72	22.46	46.90	65.22
C91C	12.72	16.43	2.77	7.91	17.60	21.66	24.51	46.15

Table 4-3 Distribution of Nitrates in mg/l by Percentil	Table 4-3	Distribution	of Nitrates ir	n mg/l by	Percentile
---	-----------	--------------	----------------	-----------	------------

						1		1
C91D	11.29	9.71	1.91	7.68	11.72	18.30	62.38	53.85
C91E	8.48	5.85	0.50	3.58	7.65	15.53	38.80	71.43
C92A	5.40	3.07	0.99	2.52	3.85	8.06	97.36	86.07
C92B	6.09	5.08	1.83	3.24	6.22	8.12	34.92	87.50
C92C	8.00	4.52	1.86	3.64	6.18	10.16	58.92	79.61
D22A	1.47	1.47	1.47	1.47	1.47	1.47	1.47	100.00
D41A	7.02	3.25	0.79	2.03	4.62	11.77	70.30	78.04
D41B	13.98	9.92	1.75	6.54	14.14	25.13	110.12	50.00
D41C	7.88	3.97	1.23	3.15	5.71	13.26	64.65	73.27
D41D	12.55	6.89	1.46	4.84	10.71	18.40	161.21	59.28
D41E	3.48	1.41	0.12	0.88	2.34	6.49	39.48	90.84
D41F	16.35	6.25	0.38	2.78	9.22	17.92	145.25	62.28
D41G	17.49	6.55	0.97	4.51	9.13	21.98	234.94	61.60
D41H	10.82	7.32	1.44	4.22	10.02	19.03	47.35	59.90
D41J	5.13	2.20	1.08	1.70	3.44	10.10	28.04	79.37
D41K	14.98	4.46	0.99	3.45	5.94	13.02	242.16	75.19
D41L	8.87	3.89	1.41	3.03	5.06	9.55	278.41	80.95
D41M	11.23	7.68	2.92	6.47	8.33	14.91	103.91	71.76
D42A	30.25	18.01	5.12	12.59	26.18	53.41	220.67	32.93
D42B	35.58	27.24	11.40	22.12	32.56	58.01	275.69	17.07
D42C	13.63	6.11	1.14	3.97	8.63	18.89	275.37	65.16
D42D	30.93	14.25	2.06	8.87	21.06	42.61	767.30	43.63
D42E	14.42	9.47	3.43	7.73	11.72	18.11	171.79	54.33
D73A	11.96	10.29	3.31	7.85	12.18	18.78	66.57	47.67
D73B	15.46	5.87	0.67	3.74	11.57	25.14	91.96	57.80
D73C	18.78	8.35	1.68	5.17	11.83	21.39	410.12	53.72
D73D	28.86	11.26	4.12	7.26	14.13	35.90	278.98	44.44
D73E	28.22	11.84	3.06	8.20	20.30	45.49	318.28	44.76
D73F	17.19	5.90	2.74	4.97	11.55	26.09	119.71	56.82

Table 4-4 Number of boreholes with Nitrates in quality class

						Classification	% Class 0-
Quaternary	Class 0	Class 1	Class 2	Class 3	Class 4		2
C31A	142	33	34	22	3	Ш	89.32
C31B	16	11	41	15	2	Ш	80.00
C31C	13	5	17	4	0	Ш	89.74
C31D	5	7	10	4	0	Ш	84.62
C31E	22	9	42	20	1	Ш	77.66
C31F	8	11	13	7	2	Ш	78.05
C32A	41	19	52	44	12	Ш	66.67
C32B	336	133	126	90	61	III	79.76

C32C	49	9	17	17	7	111	75.76
C32D	526	125	155	51	41	111	89.76
C33A	187	83	59	19	13		91.14
C33B	205	79	62	27	13	111	89.64
C33C	194	40	34	14	9	111	92.10
C91A	9	5	1	0	0	11	100.00
C91B	22	8	6	8	2	111	78.26
C91C	4	2	3	4	0	111	69.23
C91D	14	7	14	3	1	111	89.74
C91E	21	9	7	5	0	111	88.10
C92A	148	25	23	4	1	11	97.51
C92B	36	20	5	3	0	П	95.31
C92C	59	23	11	8	2	111	90.29
D22A	1	0	0	0	0	1	100.00
D41A	250	45	41	39	3	Ш	88.89
D41B	127	42	82	72	15	Ш	74.26
D41C	197	36	51	32	2	Ш	89.31
D41D	191	55	99	46	24	Ш	83.13
D41E	194	34	20	3	0	П	98.80
D41F	57	14	22	9	12	Ш	81.58
D41G	119	35	40	30	26	Ш	77.60
D41H	86	32	43	29	7	Ш	81.73
D41J	185	15	45	7	0	П	97.22
D41K	80	20	13	7	13		84.96
D41L	246	43	35	22	11		90.76
D41M	29	32	14	7	3	111	88.24
D42A	38	16	34	32	44	111	53.66
D42B	40	23	75	118	113	111	37.40
D42C	395	125	133	88	57	111	81.83
D42D	282	119	138	183	197	111	58.65
D42E	38	31	35	15	8	111	81.89
D73A	55	27	64	25	1	Ш	84.88
D73B	55	8	18	14	14	Ш	74.31
D73C	103	27	57	35	20	Ш	77.27
D73D	14	6	10	6	9	111	66.67
D73E	46	18	21	25	33	111	59.44
D73F	22	3	8	5	6		75.00

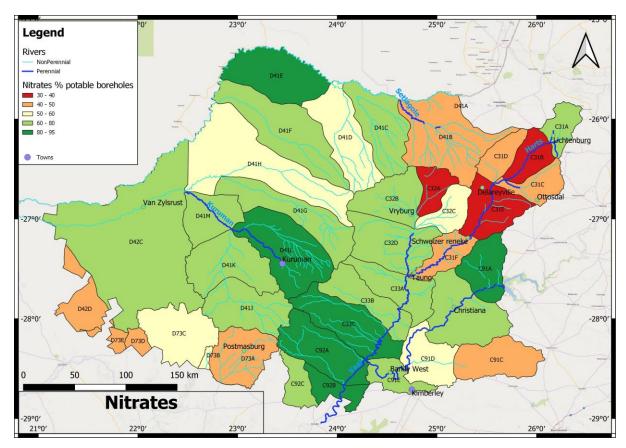


Figure 4-5 Percent of boreholes with potable groundwater in terms of nitrates

4.3 Fluoride

Groundwater quality in terms of fluoride is shown in Figure 4-6, Tables 4-5 and 4-6.

Water quality is generally of Class 0. Only in the western half of D41C and in D42D are areas of high fluoride found. Isolated areas of high Fluoride are found in Randian age volcanics (such as the Rietgat Formation (ANrg), and in some intrusive and extrusive granitoids, volcanics and metamorphics.

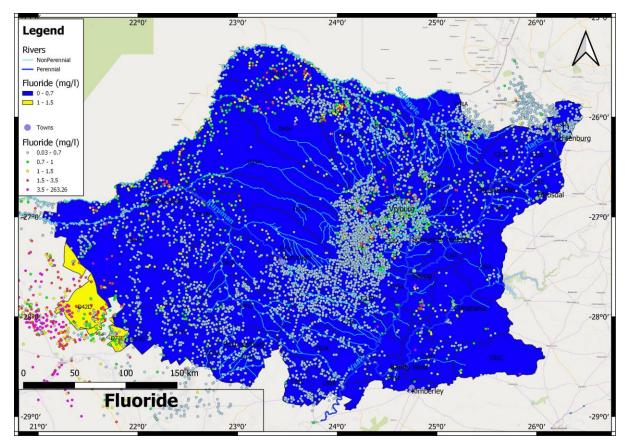


Figure 4-6 Fluoride in Groundwater by Quaternary catchment

			20 th	40 th	60 th	80 th	100 th	Potable
Quat	Average	Median	percentile	percentile	percentile	percentile	percentile	fraction
C31A	0.15	0.1	0.05	0.1	0.12	0.2	2.15	99.10
C31B	0.25	0.23	0.1	0.2	0.26	0.37	1.057	98.73
C31C	0.31	0.25	0.192	0.24	0.27	0.378	0.94	100.00
C31D	0.42	0.42	0.27	0.41	0.45	0.47	0.725	100.00
C31E	0.43	0.33	0.23	0.3	0.398	0.55	1.81	93.62
C31F	0.48	0.432	0.25	0.36	0.47	0.56	1.9	95.12
C32A	0.63	0.565	0.34	0.5	0.6364	0.78	2.17	86.59
C32B	0.53	0.41	0.22	0.35	0.47	0.68	4.68	90.03
C32C	0.49	0.4	0.27	0.35	0.42	0.604	2.55	92.93
C32D	0.43	0.33	0.22	0.29	0.38	0.56	3.31	95.10
C33A	0.39	0.3	0.21	0.27	0.33	0.47	3.7	96.68
C33B	0.25	0.24	0.13	0.2	0.28	0.36	1	99.74
C33C	0.28	0.21	0.1	0.168	0.24	0.36	12	98.61
C91A	0.39	0.27	0.206	0.258	0.316	0.59	1.04	93.33
C91B	0.69	0.5	0.23	0.38	0.61	1.13	2.04	73.91
C91C	0.94	0.6	0.3074	0.3682	0.6752	0.86	5.72	84.62

Table 4-5 Distribution of Fluoride in mg/l by Percentile
--

-	1	1	1		1	1	1	1
C91D	0.69	0.45	0.266	0.402	0.508	0.782	3.89	88.24
C91E	0.47	0.47	0.233	0.392	0.57	0.643	1.1	95.12
C92A	0.26	0.25	0.1292	0.2	0.284	0.372	1.46	99.50
C92B	0.33	0.3	0.24	0.292	0.33	0.4064	0.87	100.00
C92C	0.36	0.33	0.274	0.31	0.35	0.446	0.9	100.00
D41A	0.20	0.16	0.05	0.13	0.2	0.27	2.97	98.59
D41B	0.35	0.287	0.18	0.25	0.32	0.43	4.3	96.76
D41C	0.49	0.39	0.23	0.35	0.432	0.64	4.36	93.71
D41D	0.53	0.37	0.23	0.3088	0.45	0.76	5.21	90.12
D41E	0.74	0.49	0.27	0.41	0.64	1.21	7.14	73.71
D41F	0.76	0.52	0.226	0.412	0.684	1.088	6.98	75.44
D41G	0.28	0.22	0.128	0.19	0.25	0.37	3.37	98.00
D41H	0.61	0.54	0.23	0.4	0.65	0.928	3.34	85.28
D41J	0.27	0.24	0.13	0.2	0.27	0.36	1.23	99.20
D41K	0.33	0.25	0.11	0.17	0.332	0.49	2.93	96.99
D41L	0.16	0.13	0.05	0.11	0.14	0.1994	1.85	98.88
D41M	0.49	0.45	0.306	0.374	0.48	0.664	1.44	95.24
D42A	6.28	2.84	0.986	2.25	4.266	8.108	52.64	20.25
D42B	6.20	3.61	1.848	2.93	4.756	8.87	40.79	3.82
D42C	0.67	0.44	0.22	0.35	0.51	0.8	12.69	85.73
D42D	2.62	1.26	0.81	1.07	1.53	2.68	263.26	35.87
D42E	3.38	3.42	1.35	2.942	3.748	4.582	10.92	14.52
D73A	0.33	0.313	0.24	0.2804	0.34	0.4216	0.86	100.00
D73B	0.29	0.2485	0.15	0.22	0.282	0.438	1.14	99.07
D73C	0.45	0.305	0.16	0.24	0.38	0.6	4.65	93.33
D73D	0.78	0.59	0.404	0.54	0.654	1.0912	2.602	76.74
D73E	1.48	1.03	0.584	0.848	1.24	1.99	10.46	47.55
D73F	4.39	4.31	2.832	3.7834	4.582	5.592	12.04	2.33

Quaternary	Class 0	Class 1	Class 2	Class 3	Class 4	Classification
C31A	218	1	1	1	0	1
C31B	77	1	1	0	0	1
C31C	35	4	0	0	0	1
C31D	24	2	0	0	0	1
C31E	81	7	5	1	0	Ш
C31F	38	1	0	2	0	I
C32A	110	32	18	4	0	Ш
C32B	595	73	37	35	2	Ш
C32C	84	8	5	2	0	П

		50				
C32D	802	52	23	21	0	1
C33A	339	10	4	6	2	1
C33B	382	3	1	0	0	1
C33C	278	6	3	0	1	1
C91A	13	1	1	0	0	11
C91B	30	4	7	5	0	Ш
C91C	8	3	1	0	1	Ш
C91D	26	4	2	1	1	Ш
C91E	35	4	2	0	0	Ι
C92A	198	1	1	0	0	Ι
C92B	63	1	0	0	0	1
C92C	100	3	0	0	0	1
D22A	1	0	0	0	0	1
D41A	346	4	4	1	0	1
D41B	317	11	9	1	1	I
D41C	265	33	11	8	1	Ш
D41D	315	59	26	14	1	Ш
D41E	155	30	37	27	2	Ш
D41F	69	17	20	6	2	Ш
D41G	240	5	3	2	0	I
D41H	127	41	22	7	0	Ш
D41J	241	8	2	0	0	I
D41K	123	6	3	1	0	I
D41L	351	2	3	1	0	I
D41M	68	12	4	0	0	I
D42A	21	12	11	46	73	III
D42B	7	6	30	120	177	
D42C	604	81	57	40	17	
D42D	138	187	206	259	116	Ш
D42E	9	9	11	34	60	III
D73A	169	3	0	0	0	I
D73B	104	3	1	0	0	I
D73C	203	21	5	10	1	П
D73D	28	5	6	4	0	Ш
D73E	37	31	29	34	12	Ш
D73F	1	0	1	10	31	Ш

4.4 Metals

The maximum concentration of metals identified as exceeding SANS-241 limits in the Lower Vaal are shown in **Table 4-7.** The most widespread problem constituent is arsenic.

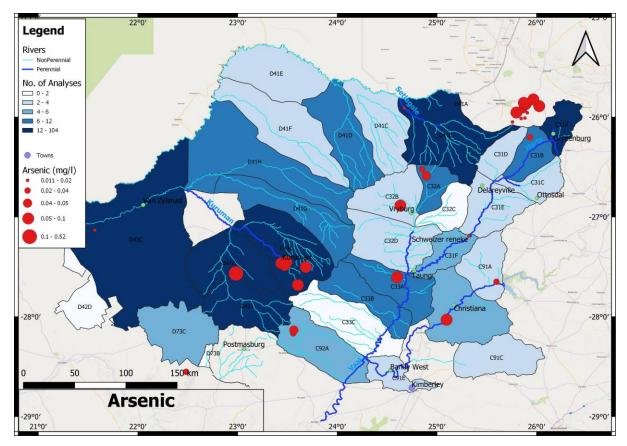

Quat	As	В	Ва	Cd	Cr	Fe	Hg	Mn	Мо	Ni	Pb	Zn
C31A		0.049	0.054		0.009	0.159		0.066				0.946
C31B	0.023	0.107	0.266		0.009	0.022		0.01	0.007			1.082
C31C		0.015	0.081					0.108	0.004	0.008		
C31D		0.06	0.194		0.007	0.027		0.002	0.013			0.04
C31E		0.189	0.574		0.007				0.006	0.009		0.019
C31F	0.013	0.25	0.176	0.002	0.003	0.021		0.008	0.007			0.016
C32A	0.041	0.948	0.103		0.003	0.014			0.021			0.359
C32B	0.078	0.165	0.147			0.067			0.014			0.228
C32C		0.108	0.005	0.002	0.01	0.023		0.008	0.014			0.16
C32D		1.296	0.009	0.007	0.004	1.17		0.051	0.007			1.193
C33A	0.087	0.213	0.046	0.004	0.006	0.993		0.396	0.011			0.12
C33B		0.139	0.231	0.002	0.005	0.075		0.095	0.01			0.541
C33C		0.182				0.807						1.049
C91A	0.029	0.133	0.115	0.006	0.006	0.029			0.007			0.008
C91B	0.093	1.151	0.611		0.016	0.027		0.025	0.007	0.056		0.722
C91C	0.009	0.121	0.023		0.004			0.002	0.01			0.03
C91D												
C91E		0.068	0.034		0.006				0.009			
C92A	0.042		0.046			0.695		0.002	0.008			0.011
C92B												
C92C						0.366						
D22A												
D41A	0.094	1.716	0.219	0.007	0.02	1.238		42.449	0.019	0.662	0.006	1.848
D41B	0.011	0.211	0.56		0.018	2.235		0.191	0.018		0.048	1.535
D41C		0.172	0.285	0.002	0.005	0.031		0.091				0.004
D41D		0.636	1.095		0.01	0.09			0.029			0.083
D41E		0.943	0.051		0.021	0.017		0.002	0.026			0.01
D41F		1.035	0.025		0.013	0.026		0.003				0.012
D41G		0.131	0.43	0.002	0.008	1.166		0.002	0.012			0.013
D41H		1.052	0.504		0.009	0.057		0.005	0.012			0.237
D41J		0.32	0.4	0.011	0.111	0.32	0.001	0.055	0.07	0.06	0.103	5.813
D41K	0.52	0.299	0.916	0.017	0.107	2.117		0.159	0.097	0.042	0.133	5.913
D41L	0.081	0.493	0.061		0.007	1.579		0.025	0.019			0.031
D41M												
D42A	0.063	5.25	0.17		0.277	0.019			0.036			0.234
D42B		4.244	0.634	0.003	0.211	0.042			0.027			0.199
D42C	0.017	0.425	0.428	0.005	0.019	0.032		0.018				0.245
D42D		0.185	0.018		0.006	0.788		0.257	0.009		1.528	0.577
D42E	0.032	1.176	0.071	0.007	0.009	0.1		0.155	0.041			0.113

Table 4-7 Maximum concentration of metals in mg/I

D73A										
D73B	0.023	0.036	0.04	0.004	0.004	0.02	0.004	0.029	0.013	0.009
D73C	0.047	1.142	0.081	0.012	0.01	0.018		0.007		0.274
D73D										
D73E										
D73F		0.398		0.023				0.075		

There are about 24 As-bearing minerals commonly found in hydrothermal veins, ore deposits. Most primary As minerals are sulphides, of which arsenopyrite is the most common. Most Arsenic bearing minerals occur in sulphide rich mineralised areas in close association with Cd, Pb, Ag, Au, Sb, P, W and Mo. Arsenic is one of a suite of incompatible elements that do not fit easily into the lattices of common rock-forming minerals. It is common in geothermal springs that leach continental rocks. Because arsenic is an incompatible element, it accumulates in differentiated magmas, and commonly found at higher concentrations in volcanic rocks of intermediate (andesites) to felsic (rhyolites) composition than in mafic (basaltic/doleritic) rocks. It is only found in sedimentary rocks, such as the Karoo, where argillaceous rocks with sulphide mineralisation under reducing conditions, such as black carbonaceous shales.

The Target Water Quality Guideline Range is 0 - 10 ug/l and should never exceed 200 ug/l, which would result in serious health risk (DWAF, 2006b). The distribution of As occurrence over 10 ug/l is shown in **Figure 4-7**.

Figure 4-7 Distribution of arsenic in groundwater

The following lithologies are associated with arsenic:

- Kraaipan Group: pyrite associated with pyritic gold bearing quartz veins in banded iron formations in the Vryburg-Mafikeng area.
- Campbell Rand and Asbestos Hills Subgroups of the Ghaap Plateau dolomites: Sporadic mineralisation occurs in the vicinity of Griquatown, where the dolomite is intruded by thin basic dykes. Between Griquatown and Prieska sulphides occur in banded iron of the Asbestos Hill Subgroup in quartz-carbonate veins. At Reivelo, breccia bodies in the dolomites also contain sulphides assocaiated with lead-zinc deposits. Southwest of Vryburg spalerite and galena are concentrated in massive sulphide bodies in carbonates of the Campbell Rand, with minor traces of pyrite.
- South of Zeerust, arsenic is associated with lead-zinc in the Malmani Formation near the contact with the Pretoria Subgroup.
- Dominion Group, Platberg Group, Olifantshoek Supergroup, Cox Group andesites: These volcanics can potentially host arsenic without mineralisation.

The lithologies predicted to host arsenic (Sami & Druzynski, 2003) relative to high arsenic concentrations are shown in **Figure 4-8.** Much of the northwest is covered with Kalahari sand, hence the underlying lithology cannot be shown.

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Categorisation Report

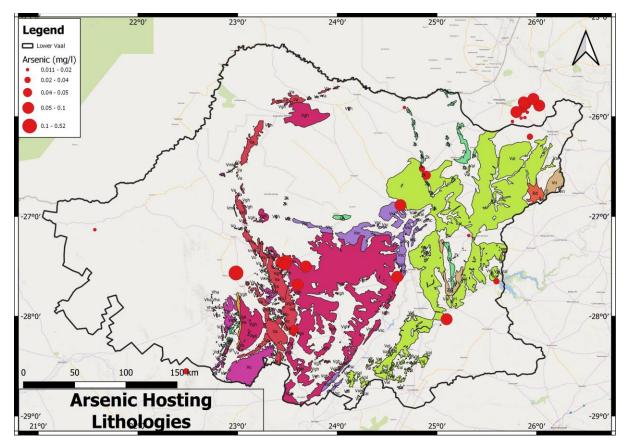
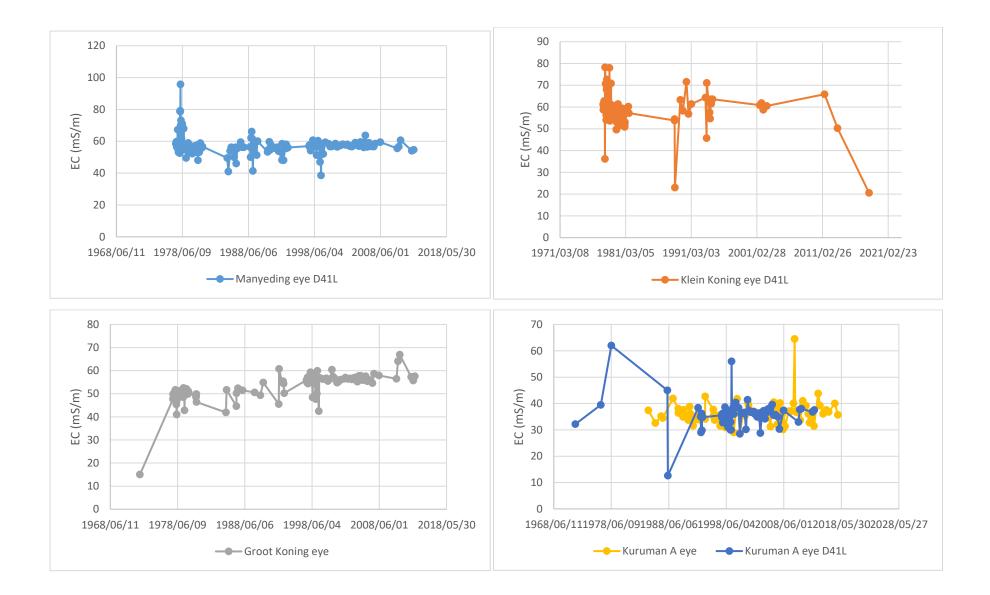



Figure 4-8 High arsenic concentrations and arsenic hosting lithologies

4.5 Temporal Trends

To investigate temporal trends in groundwater quality, open active water quality stations with more than 50 analyses were plotted for electrical conductivity. Data from 7 stations are available. No trend in deteriorating quality can be observed (**Figure 4-9**). Other water quality analyses with between 40 and 50 records are shown in **Appendix 1.** None exhibit long term temporal trends.

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Quality Categorisation Report

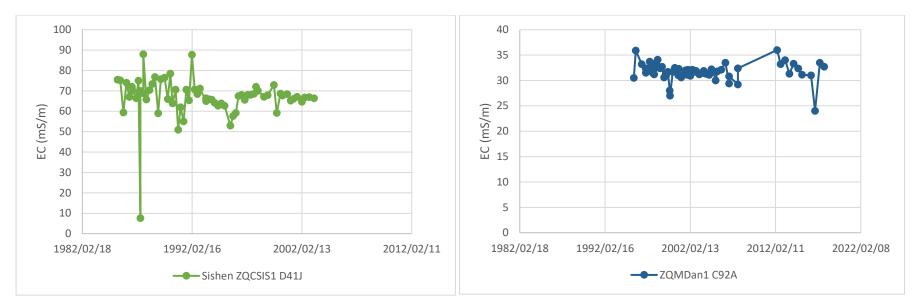


Figure 4-9 Electrical conductivity over time

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Categorisation Report

4.6 Groundwater Types

Groundwater was classified according to dominated ions (**Figure 4-10**). The dominant type (3223 samples) is Ca-Na-HCO₃-Cl-SO₄. It is widespread throughout the Lower Vaal. Ca-Mg-HCO₃-Cl-SO₄ (1468 samples) and Ca-Mg-HCO₃ (562 samples) is found only in the dolomites. Na-Cl groundwater is found only in the far west. Going eastward, the groundwater is of increasingly mixed Na-Ca-Cl mixed types. Along the Kuruman River, a linear trend of Ca Ca-Na-HCO₃-Cl-SO₄ groundwater is present amidst prevalent NaCl groundwater due to channel losses from water originating from the dolomites. This is not noted along the Molopo because channel losses in the Molopo are largely from storm runoff rather than dolomite discharge.

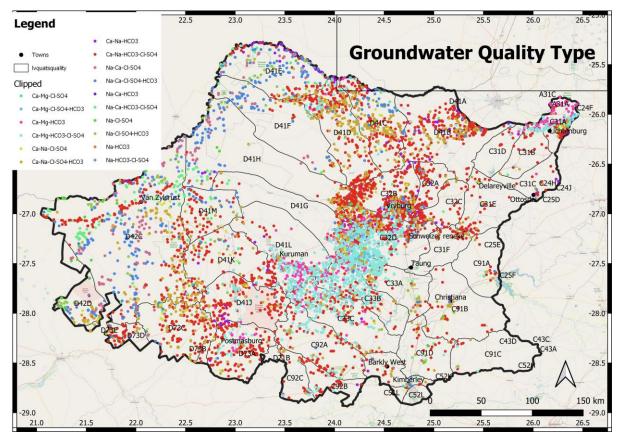


Figure 4-10 Groundwater type

4.7 Surface Groundwater Interaction Processes and Groundwater Quality

The main mechanisms affecting groundwater quality can be summarised as:

- High recharge resulting in the Ideal to Good water quality in the dolomites
- Losses of streamflow to the aquifer ameliorating water quality by dilution in a linear pattern along the Kuruman and Molopo Rivers
- Endoreic areas exhibiting poorer water quality due to the lack of surface runoff to export salts and their accumulation in pans, resulting in highly variable water quality

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Quality Categorisation Report

- Localised contamination from irrigation, vegetation removal for dryland agriculture and possibly sanitation practices, resulting in nitrate enrichment
- Isolated zones of mineralisation results in pockets of elevated metal concentrations, especially arsenic.

Groundwater can be categorised according to Present Status Category (**Table 3-2**) based on the worst PSC category in terms of EC, Nitrates and Fluoride (**Figure 4-11**). Groundwater is generally of Category III in the Lower Vaal. Many catchments are borderline classified as PSC III, with 80-95% of boreholes in Class 0-2 in terms of nitrates.

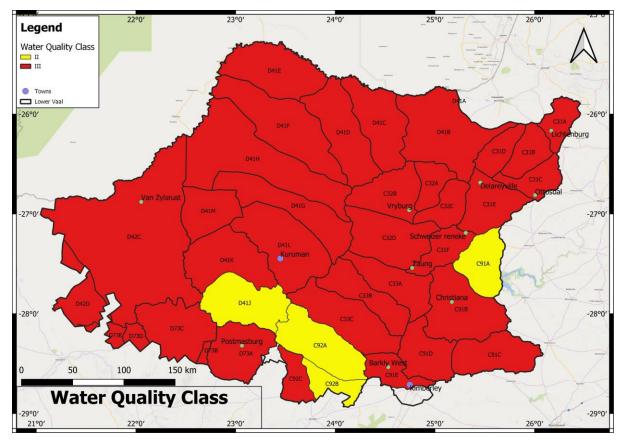


Figure 4-11 Groundwater Present Status Category

5 CONCLUSIONS

The following conclusions can be drawn regarding the categorization of groundwater:

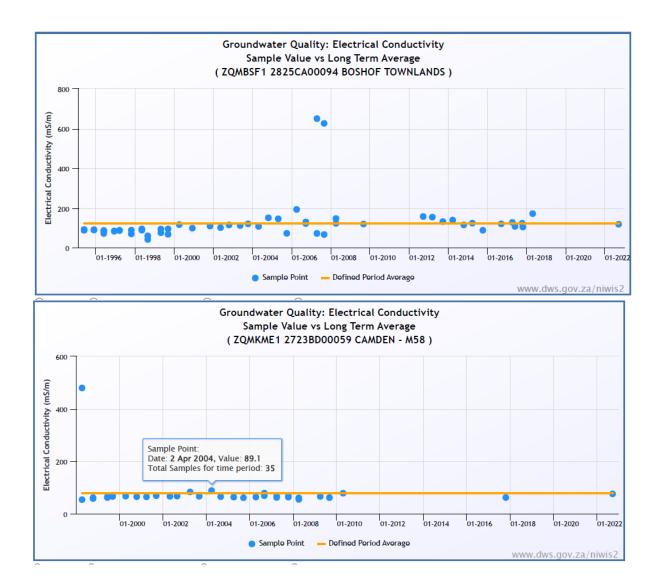
• In terms of EC as a measure of total dissolves salts, the median groundwater quality is of Class 0 to 1, with an EC of less than 150 mS/m, in the dolomitic aquifers of C31A around Lichtenburg and Kuruman in D41L. Over most of the eastern portion of the study area groundwater is of Class 1-2, with a median of Class 1. Groundwater of Class 2 and 3 is found at Hartswater where

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Categorisation Report

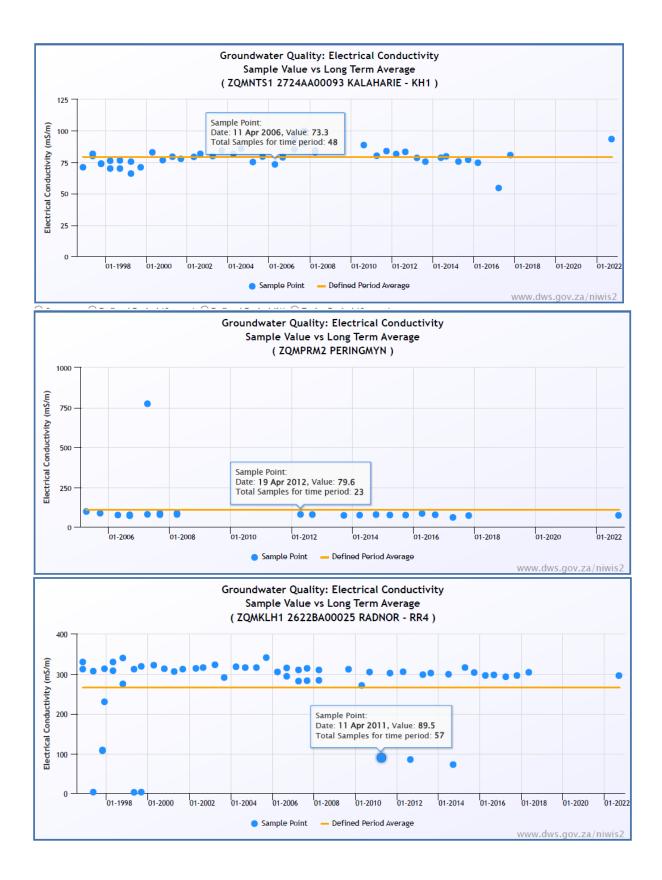
irrigation from the Vaalharts occurs in C33A-C. Groundwater of Class 3-4 occurs from Vryburg to Reivilo in C32B, D41G and C33B. These areas are associated with communities, irrigated lands, and extensive dryland farming. The western region has highly variable water quality, with medians of 1-3 in non-dolomitic areas. The presence of large endoreic areas in the drier western regions results in worsening groundwater quality to Class 3 and 4 since salts are not exported and accumulate in pans, creating variability in water quality.

- Linear trends of Class 0-1 groundwater occur along the Kuruman and Molopo rivers, indicative of flood waters and discharge from dolomite springs recharging the aquifer along the rivers. This can be noted along the Kuruman River to the confluence with the Molopo River as far as D41E.
- Boreholes with a high electrical conductivity of Class 3 and 4 are largely restricted to areas covered by Kalahari sands, which are dry, endoreic, and the sand cover serves to reduce recharge.
- In terms of nitrates, no significant nitrification is evident in the lower Vaalharts area of C33, although elevated nitrates occur in a band are of dryland agriculture between Vryburg and Lichtenburg in C31and C32, and east of Kimberley and Christiana in C91C. West of Kuruman natural dryland nitrate conditions occur due to the absence of vegetation and organic material to uptake nitrates, resulting in the median nitrate concentration to decrease to Class 2 in D42, and in increasing number of boreholes of class 3 and 4 in D41. In C31 and C91C, less than 50% of boreholes are potable due to nitrates. Potability also decreases westwards to under 50% in D42 and D73.
- In terms of Fluoride, water quality is generally of Class 0. Only in the western half of D41C and in D42D are areas of high fluoride found. Isolated areas of high Fluoride are found in in Randian age volcanics and in some the some intrusive and extrusive granitoids, volcanics and metamorphics.
- Several lithologies are associated with high levels of arsenic, these being the Kraaipan Group, the Campbell Rand and Asbestos Hills Subgroups of the Ghaap Plateau dolomites, the Malmani Formation south of Zeerust, andesitic Formations of the Dominion Group, Platberg Group, Olifantshoek Supergroup and Cox Group.
- No trend in deteriorating quality can be observed from the available long term monitoring data.
- The dominant groundwater type is Ca-Na-HCO₃-Cl-SO₄. It is widespread throughout the Lower Vaal. Ca-Mg-HCO₃-Cl-SO₄ and Ca-Mg-HCO₃ is found only in the dolomites. Na-Cl groundwater is found only in the far west. Going eastward, the groundwater is of increasingly mixed Na-Ca-Cl mixed types. Along the Kuruman River, a linear trend of Ca Ca-Na-HCO₃-Cl-SO₄ groundwater is present amidst prevalent NaCl groundwater due to channel losses from water originating

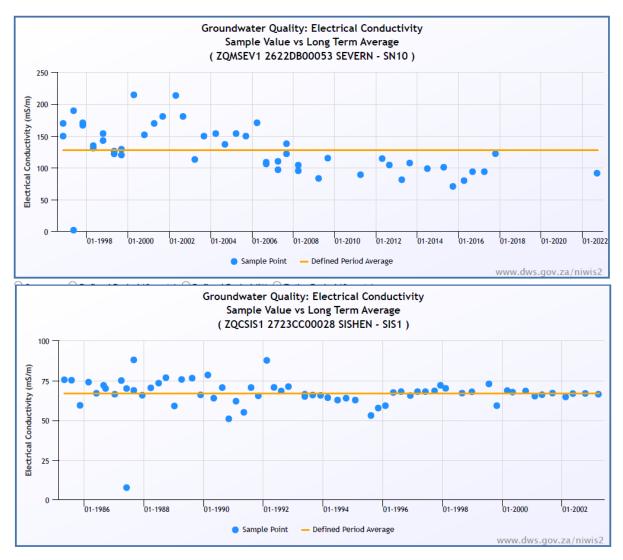
Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Categorisation Report

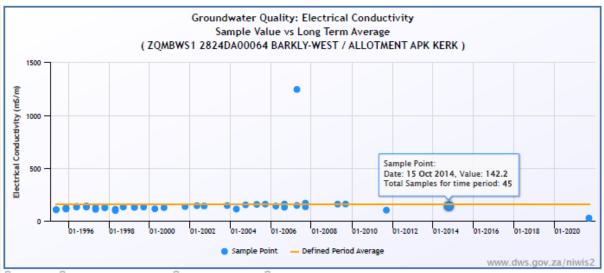

from the dolomites. This is not noted along the Molopo because channel losses in the Molopo are largely from storm runoff rather than dolomite discharge.

- The main mechanisms affecting groundwater quality can be summarised as: High recharge resulting in Ideal to Good water quality in the dolomites, losses of streamflow to the aquifer ameliorating water quality by dilution in a linear pattern along the Kuruman and Molopo Rivers, endoreic areas exhibiting poorer water quality due to the lack of surface runoff to export salts and their accumulation in pans, resulting in highly variable water quality, localised contamination from irrigation, vegetation removal for dryland agriculture and possibly sanitation practices, resulting in nitrate enrichment, isolated zones of mineralisation results in pockets of elevated metal concentrations, especially arsenic.
- Groundwater is generally of PSC Category III in the Lower Vaal, however, this is the result of nitrates being on the border line of PSC category II and III in terms of nitrates, with many quaternaries having just under the threshold of 95% of boreholes of Class 0-2.

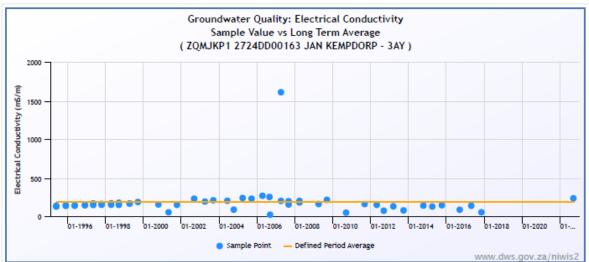

6 REFERENCES

- Department of Water Affairs. (1998). WRC Report Nr. TT 101/98: Quality of Domestic Water Supplies. Volume 1: Assessment Guide. The Department of Water Affairs and Forestry, Pretoria.
- Department of Water Affairs and Forestry, South Africa. 2004. Internal Strategic Perspective: Vaal River System Overarching. Report No P RSA C000/00/0103. Prepared by: PDNA, WRP Consulting Engineers (Pty) Ltd, WMB and Kwezi-V3.
- Sami, K & Druzynski, AL (2003). Predicted Spatial Distribution of naturally Occurring Arsenic, Selenium and Uranium in groundwater in South Africa-Reconnaissance Survey. WRC Report 1236/1/03.


7 APPENDIX 1 GROUNDWATER EC OVER TIME



Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Categorisation Report



Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Categorisation Report

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Categorisation Report

Summary O Defined Period (Counte) O Defined Period (%) O Entire Period (Counte)

Investigation of Groundwater and Surface Water Interaction for the Protection of Water Resources in the Lower Vaal Catchment. Project 11380: Groundwater Categorisation Report